
ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Gestion Parking
Intelligent

VHDL

Présenté par :
KUNAKA DANIEL
MAKRI YOUSSRA
SIMPORE TAOBATA
SABOR LAILA

Module : Programmation des circuits FPGA

ABOUL-MOUMOUNI DIALLO
BOUARRAF DOHA

EL BAROUDI MALAK
MOUHAFID HAFSA

Professeur : JAMAL ZBITOU





PARTIE 1

PARTIE 2

PARTIE 3

PARTIE 4

PARTIE 5

INTRODUCTION

PRÉSENTATİON DU CAHİER DES CHARGES

MODULE COMPTEUR DE PLACES

MODULE AFFİCHAGE 7 SEGMENTS

MODULE CONTRÔLE BARRİÈRE

MODULE PRİNCİPAL

S
O
M
M
A
I
R
E

PARTIE 6 TESTBENCH ET SİMULATİON

PARTIE 7 IMPLÉMENTATİON MATÉRİELLE

CONCLUSION



Introduction

Dans le cadre du module FPGA, notre projet consiste à concevoir un système intelligent et
automatisé de gestion de parking, basé sur une carte FPGA et programmé en langage VHDL.
 Ce système répond à un besoin réel : automatiser le fonctionnement des parkings modernes afin
d’assurer une meilleure gestion du flux de véhicules, réduire les interventions humaines et
optimiser l’utilisation des places disponibles.
Le système que nous développons doit être capable de :

détecter automatiquement l’entrée et la sortie des véhicules,
compter en temps réel le nombre de places disponibles,
afficher ce nombre sur un afficheur 7-segments,
contrôler automatiquement une barrière d’accès selon l’état du parking (places disponibles
ou parking plein).

Ce projet combine plusieurs notions essentielles telles que la conception numérique, la
modularité en VHDL, la simulation via testbench. Il constitue une application concrète des
systèmes embarqués et des circuits logiques programmables.

4



ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Présentation du
Cahier des charges

5

PARTIE 1:



Spécifications fonctionnelles

Le système doit répondre à quatre grandes exigences fonctionnelles :

Comptage automatique des véhicules
→ Entrée : -1 place | Sortie : +1 place

Affichage en temps réel du nombre de
places disponibles

Contrôle automatique de la barrière
d’accès

Interdiction d’entrée si le parking est
plein

1

4

2

3

6



Afficheur 7-segments 4 digits multiplexé
 → 7 bits pour les segments (a à g)
→ 4 bits pour sélectionner le digit actif

2 sorties pour commander le moteur de la barrière 
→ motor_open et motor_close (jamais actifs en même
temps)
 → pilotées via un pont en H L298N ou un servomoteur SG90

sensor_open_limit → barrière complètement levée
sensor_closed_limit → barrière complètement baissée
sensor_passage → capteur IR ou ultrason sous la barrière
→ Interdit toute commande de fermeture tant qu’un
véhicule est dessous

Actionneur de barrière

Capteurs de position et
sécurité barrière

Contraintes matérielles

Capteurs d’entrée/sortie
véhicule

Le système doit fonctionner avec des composants
bien précis :

Afficheur 7-segments 4
digits multiplexé

Horloge système à 50 MHz
Bouton de reset

Carte FPGA

Deux capteurs pour détecter les véhicules : un à
l’entrée (voiture_entree), un à la sortie
(voiture_sortie).



Le système est organisé de façon hiérarchique et modulaire autour de quatre blocs principaux :

Diagramme fonctionnel 

Final
Selection

8

1.Bloc Compteur de places → gère le nombre de places libres (incrémentation/décrémentation
sécurisée)

2.Bloc Contrôle de barrière → machine à états qui pilote l’ouverture/fermeture en fonction des
capteurs et du signal d’autorisation

3.Bloc Affichage 7 segments → convertit le nombre de places en signaux segments 
pour l’affichage multiplexé

4.Bloc Principal (top_parking) → module de plus haut niveau qui interconnecte les trois blocs
précédents, contient le générique MAX_PLACES et génère la logique globale d’autorisation
d’ouverture

Les flux de données circulent comme suit :
Les signaux bruts des capteurs arrivent dans le top
Le top décide si oui ou non il faut ouvrir la barrière 
Le compteur est mis à jour uniquement sur front valide d’entrée ou de sortie
Le nombre de places est envoyé en continu à l’afficheur



Règles de gestion

9

1.Ouverture de la barrière
Pour une entrée → voiture_entree = ‘1’ AND places_disponibles > 0
Pour une sortie → voiture_sortie = ‘1’ (toujours autorisée, même si plein) → Cela évite le deadlock

      classique : si le parking est plein, on peut toujours sortir !

2.Fermeture automatique
Dès que le véhicule a complètement franchi la barrière (sensor_passage retombe à ‘0’ après avoir

       été activé) et que la barrière est en position ouverte, on commande la fermeture.

3.Sécurité absolue
Il est strictement interdit de fermer la barrière tant qu’un véhicule est détecté dessous

      (sensor_passage = ‘1’)
Cela garantit qu’on ne peut jamais écraser ou coincer un véhicule.

Ces règles sont implémentées à la fois dans le module top_parking (logique d’autorisation) et dans le
module de contrôle de barrière (machine à états sécurisée).



ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Module Compteur
de places

10

PARTIE 2:



Module compteur de places – Gestion
du nombre de places disponibles

Le module compteur de places joue un rôle central
dans le système de gestion intelligent de parking. Il
garde en mémoire le nombre de places disponibles et
le met à jour en temps réel :

Il décrémente lorsqu’une voiture entre . 
Incrémente lorsqu’une voiture sort.
Il garantit que le compteur ne dépasse jamais la
capacité maximale ni ne descend en dessous de
zéro.

Sa sortie fournit l’information essentielle aux autres
modules, notamment pour l’affichage du nombre de
places libres et pour la décision d’ouverture ou de
fermeture de la barrière.

11



Si voiture_entree = '1' et voiture_sortie = '1' en
même temps → le compteur reste inchangé
(événements annulés). 

Si voiture_sortie = '1' et compteur < MAX_PLACES →
le compteur augmente de 1. 

Si voiture_entree = '1' et compteur > 0 → le compteur
diminue de 1.

Sortie d’une voiture

Entrée d’une voiture 

 Logique du fonctionnement

Initialisation (reset synchrone) 

Cas simultané 

La valeur du compteur est envoyée en
std_logic_vector pour être utilisée par :

l’afficheur (7 segments ou LCD),
le module barrière (autoriser/refuser l’entrée).

Sortie du module

Au front d’horloge (Montant), si rst = '1', le compteur est
remis à la capacité maximale (99 places).



Interface du module

Nom du signal Type Direction Rôle dans le système

clk std_logic Entrée Horloge du système. Elle synchronise
toutes les opérations du module.

rst std_logic Entrée remet le compteur à sa valeur maximale

voiture_entree std_logic Entrée Impulsion envoyée quand une voiture
entre dans le parking.

voiture_sortie std_logic Entrée Impulsion envoyée quand une voiture
sort du parking.

nb_places_dispo std_logic_vector(6 downto 0)         Sortie
Nombre de places disponibles, convertit

en vecteur logique pour affichage ou
décision

13



L’en‑tête du code importe les
bibliothèques IEEE nécessaires.
STD_LOGIC_1164 définit les types
logiques et leurs opérations, tandis
que NUMERIC_STD fournit les
conversions et calculs numériques

Les bibliothèques

Explication du code  VHDL

14



Generic MAX_PLACES: Paramètre
configurable de capacité (par défaut 99).
On peut le modifier sans toucher au code
interne.
Port clk (in): Horloge du système; toutes
les actions sont synchronisées dessus.
Port rst (in): Signal de réinitialion
Port voiture_entree (in): Impulsion
quand une voiture entre; une seule
période d’horloge idéalement.
Port voiture_sortie (in): Impulsion quand
une voiture sort; une seule période
d’horloge idéalement.
Port nb_places_dispo (out): Valeur
exportée en vecteur pour
affichage/décision (7 bits suffisent pour
0–100).

Entity

Explication du code VHDL

15



Architecture Behavioral: Bloc qui décrit
le comportement logique du module ,
sans détailler la structure physique des
composants internes
Le signal compteur est comme une
petite mémoire qui garde le nombre
de places libres. Il est borné entre 0 et
la capacité maximale pour éviter les
erreurs, et au démarrage il est initialisé
à MAX_PLACES, ce qui correspond à un
parking vide avec toutes les places
disponibles.

Déclaration interne et
initialisation

Explication du code VHDL

16



Mon process est cadencé par l’horloge.
Au reset, le compteur revient à la
capacité maximale. Si une voiture entre,
on décrémente; si une voiture sort, on
incrémente; et si les deux arrivent en
même temps, on ne change rien.
 L’ordre des conditions garantit qu’une
seule action  est exécutée par cycle.

Processus de comptage
et reset

Explication du code VHDL

17



J’ai convertis l’integer en unsigned
sur 7 bits , 7 bits car 2^7=128 couvre
0–99. 
J’ai convertis unsigned en
std_logic_vector pour compatibilité
avec les ports et les afficheurs 
J’ai gardé la logique interne en
integer (simple, sûre) et ne convertis
qu’en sortie pour l’affichage (7
segments)

Conversion de la valeur
vers la sortie binaire

Explication du code VHDL

18



ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Module affichage 7
segments

19

PARTIE 3:



Module Affichage 7 Segments

Son rôle est de montrer en temps réel le nombre de places
disponibles à l’utilisateur. 

Objectifs
Afficher une valeur comprise entre 0 et 99
Utiliser un afficheur à cathodes communes avec segments
actifs haut.
Masquer le zéro en tête
Assurer un affichage stable et lisible grâce au multiplexage.

20



Le compteur fournit une valeur binaire (count_in).
 Le module transforme cette valeur en deux chiffres BCD :
unités et dizaines.

Multiplexage

Axes de
fonctionnement

Conversion binaire → BCD

Masquage du zéro en
tête

Décodage BCD → segments

1

4

3

2
Pendant 1 ms → affiche unités.
Pendant 1 ms → affiche dizaines.
L’œil humain croit que les deux sont allumés en même temps.

Si la valeur est < 10, on n’affiche pas la dizaine

Chaque chiffre BCD est traduit en segments allumés.
Exemple : BCD “0010” → affiche “2” en allumant les segments a,
d, e, g, c.



Explication du code VHDL

22



le contrôleur principal de l’afficheur 7 segments.

23

Entrées :
clk : horloge du FPGA (50 MHz).
rst : reset actif haut. 
count_in : valeur binaire (0 à 99) à afficher.
Sorties :
cathode : sélectionne quel digit est actif (unités
ou dizaines).
seg : contrôle les 7 segments (a–g).

refresh_cnt : compteur pour gérer la vitesse du
multiplexage.
digit_sel : bit qui alterne entre unités et dizaines.
d_units : chiffre des unités en BCD.
d_tens : chiffre des dizaines en BCD.
current_bcd : chiffre actuellement affiché (selon
digit_sel).

ENTITY

Signaux internes



le contrôleur principal de l’afficheur 7 segments.

24

process(clk, rst) 
On crée un processus qui réagit quand l’horloge (clk) change ou
quand le reset (rst) est activé.
if rst = '1' then 
Si le reset est activé, on remet le compteur refresh_cnt à zéro.
Sinon, à chaque front montant de l’horloge (50 MHz), on exécute le
code suivant
refresh_cnt <= refresh_cnt + 1; 
 Le compteur refresh_cnt s’incrémente de 1 à chaque cycle
d’horloge.
digit_sel <= refresh_cnt(15)
 On prend le bit 15 du compteur pour décider quel digit afficher :
Si digit_sel = 0 → unités.
Si digit_sel = 1 → dizaines.

Ce bloc s’exécute dès que count_in change.
On crée une variable entière pour stocker la
valeur.
On déclare deux variables locales dans le
process : u et t
On convertit la valeur binaire en entier.
On limite à 99 pour éviter les erreurs.
On calcule les unités (reste de la division par
10).
On stocke ces chiffres en BCD (4 bits chacun).

Bloc 1 – Compteur de rafraîchissement

Bloc 2 - Conversion binaire → BCD



le contrôleur principal de l’afficheur 7 segments.

25

Quand digit_sel = 0, le bloc active le digit des
unités et envoie le chiffre des unités (d_units)
vers le décodeur.
Quand digit_sel = 1, il active le digit des
dizaines et envoie le chiffre des dizaines
(d_tens).

On envoie current_bcd au décodeur bcd_to_7seg.
Le décodeur traduit le chiffre en segments allumés. 
 Exemple : current_bcd = "0010" → affiche le chiffre “2”.

 Bloc 3 – Sélection du digit + masquage du zéro

Bloc 4 – Décodage

Si la valeur à afficher est inférieure à 10, il
n’y a pas de dizaine à montrer.
Dans ce cas, le bloc éteint le digit des
dizaines pour éviter d’afficher un zéro à
gauche.

Le chiffre choisi (unités ou dizaines) est stocké
dans current_bcd



Décodeur BCD vers 7 segments

26

Entrée bcd : chiffre codé sur 4 bits (exemple :
“0010” = 2).
Sortie seg : vecteur de 7 bits pour les
segments a à g.

-Dès que bcd change, le contenu du process
est recalculé.
-le case agit comme une table de
correspondance :
Si bcd = "0000" → on allume les segments
pour afficher 0...etc



Barrière : Automatisation 

Le module de contrôle de la barrière,
l'élément physique qui gère l'accès des
véhicules au parking.

Module de Contrôle de 

 d'Ouverture/Fermeture

Capteurs et actionneurs

Automatisation du système

PARTIE 4



Assurer l'ouverture et la fermeture séquencée et sécurisée de la barrière en réponse 

Objectifs et Spécifications Fonctionnelles

Entrées : Capteurs &
Commandes

1. motor_open :
Active le moteur pour
l'ouverture.

2. motor_close :
Active le moteur pour la
fermeture.

Sorties : Commandes
Moteur

1. trigger_open :
Commande d'ouverture venant du
module principal. 

2. sensor_open_limit :
Capteur de fin de mouvement
(barrière ouverte). 

3. sensor_closed_limit :
Capteur de fin de

mouvement (barrière fermée).

4. sensor_passage :
Capteur de passage du

véhicule (déclenche la fermeture).

aux commandes du module principal et
aux capteurs de position.

28



ouvrir-attendre-fermer
modélisé par une FSM,
comportement
déterministe et sécurisé.OPENING : Moteur d'ouverture

actif, attente de
sensor_open_limit

Conception :
Une Machine
à États Finis
(FSM)

IDLE_CLOSED : Barrière fermée,
attente d'un trigger_open

IDLE_OPEN : Barrière
ouverte, attente de
sensor_passage

CLOSING : Moteur de fermeture actif,
attente de sensor_closed_limit

Utilisation du modèle à
trois processus : registre
d'état, logique de
prochain état et logique
de sortie pour une
conception synchrone et
claire.

Implémentation VHDL

1

4

3

2

29



L'entité définit l'interface : horloge, reset, 4
entrées de capteurs/commandes et 2
sorties de moteur.

Entité VHDL

Détails de l'Implémentation VHDL

Ce processus synchrone gère la transition
d'état sur le front montant de l'horloge.
Nous avons choisi un Reset Synchrone
pour garantir la stabilité de l'état initial.

Processus 1 : Registre
d'État

Ce processus combinatoire est simple : il
active motor_open uniquement dans l'état
OPENING et motor_close uniquement dans
l'état CLOSING. Dans les états IDLE, les
moteurs sont désactivés.

Processus 3 : Logique de
Sortie

30



L'entité définit l'interface : horloge, reset, 4
entrées de capteurs/commandes et 2
sorties de moteur.

Entité VHDL

Détails de l'Implémentation VHDL

31



Ce processus synchrone gère la transition
d'état sur le front montant de l'horloge.
Nous avons choisi un Reset Synchrone
pour garantir la stabilité de l'état initial.

Processus 1 : Registre
d'État

Détails de l'Implémentation VHDL

32



Ce processus combinatoire est simple : il
active motor_open uniquement dans l'état
OPENING et motor_close uniquement dans
l'état CLOSING. Dans les états IDLE, les
moteurs sont désactivés.

Processus 3 : Logique de
Sortie

Détails de l'Implémentation VHDL

33



C'est le cœur de la logique de contrôle. Il
détermine le prochain état en fonction de
l'état actuel et des entrées.

Processus 2 : Prochain
État

Logique de Transition (Prochain État)

De IDLE_CLOSED à OPENING : La transition
se fait uniquement si trigger_open = '1'.
Cela simule la réception de l'ordre
d'ouverture.

Transition 1 : Ouverture

De OPENING à IDLE_OPEN : La transition se
fait uniquement si sensor_open_limit = '1'.
Le système attend la confirmation
physique que la barrière est bien ouverte
avant de s'arrêter.

Transition 2 : Attente

De IDLE_OPEN à CLOSING : La transition se
fait uniquement si sensor_passage = '1'.
Cela garantit que la barrière ne se ferme
qu'après le passage effectif du véhicule.

Transition 3 : Fermeture

34



Logique de Transition (Prochain État)

35



Le testbench (tb_controle_barriere) est essentiel pour valider que le module respecte

Vérification du Comportement 

Scénario de Test
Résultats de
Simulation

1. Reset : Vérification de l'état initial (IDLE_CLOSED). 

2. Séquence d'Ouverture : Envoi de trigger_open, attente de
motor_open = '1', puis envoi de sensor_open_limit = '1' pour vérifier
l'arrêt du moteur. 

3. Séquence de Fermeture : Envoi de sensor_passage = '1', attente de
motor_close = '1', puis envoi de sensor_closed_limit = '1' pour vérifier
le retour à l'état initial.

 les spécifications fonctionnelles avant l'intégration.
Il simule les signaux d'entrée et

observe les sorties.

36



Vérification du Comportement 

Résultats de
Simulation

trigger_open -> motor_open -> sensor_open_limit → motor_open s'arrête ->

 sensor_passage -> motor_close -> sensor_closed_limit -> motor_close s'arrête

37



ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Module principale 

38

PARTIE 5:



 Ce module ne fait pas lui-même les calculs ni
l’ouverture physique,
 mais il organise, contrôle et connecte tous les autres
modules.

Rôle du module principal : top_parking

Sans top_parking, les modules seraient isolés et ne
pourraient pas communiquer.

Le top_parking reçoit toutes les informations venant :
des capteurs (voiture entrée, voiture sortie), des
capteurs de barrière, du reset
et de l’horloge. Puis il décide quel sous-module doit
réagir. Il ne calcule pas lui-même, mais il dirige
l’ensemble du système.

Il contient la logique de décision la plus importante
Il synchronise tous les signaux
Il convertit les données pour l’affichage
Il gère la détection “parking plein”

39



Signal Type Rôle

voiture_entree in std_logic Demande d’entrée d’une
voiture

voiture_sortie in std_logic Demande de sortie d’une
voiture

sensor_passage in std_logic Capteur qui détecte qu’une
voiture est passée sous la barr

sensor_open_limit in std_logic Indique que la barrière est
complètement ouverte

sensor_closed_limit in std_logic Indique que la barrière est
complètement fermée

Signal Type Rôle

cathode
out std_logic_vector(3 downto
0)

active le digit à afficher
(unités/dizaines)

seg
out std_logic_vector(6 downto
0)

Segments allumés pour
afficher le nombre de places

motor_open out std_logic
Active le moteur pour ouvrir la
barrière

motor_close out std_logic
Active le moteur pour fermer
la barrière

L’entité top_parking

40

Entrées capteurs / commandes

Sorties vers actionneurs / afficheur



Déclaration des signaux internes

41

 c’est ici que le module principal crée des signaux intermédiaires pour faire communiquer 
les autres modules entre eux.
 1. nb_places_dispo :
C’est le nombre de places restantes, envoyé par le module compteur_places.
2. count_unsigned :
 C’est nb_places_dispo, mais converti en format unsigned au lieu de
std_logic_vector.
 3. parking_has_place :  C’est lui qui décide si on autorise l’entrée des voitures.
4. trigger_open : C’est le signal final qui dit : « Ouvre la barrière maintenant !
5. synchronisation des entrées :  Les signaux venant de l’extérieur (capteurs,
boutons…)
 sont asynchrones donc on doit les synchronisés

Comme les signaux venant des capteurs arrivent de manière asynchrone,
 on utilise un petit process synchronisé avec l’horloge pour les stabiliser.

Ce process est exécuté à chaque front d’horloge donc synchronisation avec clk
On capture les signaux uniquement lorsqu’il y a un front montant.
 Si reset actif, on remet les signaux synchronisés à 0. C’est important pour
démarrer dans un état stable.
On transfère les signaux externes vers des signaux internes stabilisés.



 Vue d’ensemble : les 5 blocs du parking intelligent

42

1) Module compteur_places
Son rôle : gérer le nombre de places du parking

Il compte combien de places sont encore disponibles.
Quand une voiture entre → le compteur décrémente
Quand une voiture sort → le compteur incrémente
Il utilise clk pour avancer et rst pour se réinitialiser
nb_places_dispo = résultat en binaire (0–99)

2) Conversion et détection
Son rôle : transformer la valeur binaire en un nombre utilisable pour
comparer

nb_places_dispo est en std_logic_vector (simple ensemble de bits)
On le convertit en unsigned (nombre entier binaire)
Ensuite, on peut faire :

count_unsigned > 0
→ Si oui → le parking a encore de la place
 → Si non → parking plein

3) Logique d’ouverture corrigée
Son rôle : décider si la barrière doit s’ouvrir ou non
La barrière doit s’ouvrir si :
✔️ Une voiture veut entrer ET il reste des places
✔️ Ou une voiture veut sortir (toujours autorisé)



 Vue d’ensemble : les 5 blocs du parking

43

4) Module contrôle_barrière
Son rôle : faire bouger la barrière
Ouvre la barrière si trigger_open = 1
Attend le capteur sensor_open_limit (barrière complètement
ouverte)
 Attend que la voiture passe (sensor_passage)
 Ferme la barrière
 Attend sensor_closed_limit (barrière complètement fermée)
active le moteur dans le sens d’ouverture
active le moteur dans le sens de fermeture

5) Module d'affichage 7 segments
Son rôle : afficher les places disponibles sur l’afficheur

count_in = valeur des places disponibles en binaire
Le module convertit ce nombre en chiffres (dizaines + unités)
Il utilise :
seg(6 downto 0) : quels segments allumer
cathode(3 downto 0) : quel digit afficher (multiplexage)



Schéma du système top_parking

44



ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Testbench 
      & Simulation

45

PARTIE 6:



Déclaration des signaux et constantes de Test
Bench

46

Initialiser les paramètres
essentiels de la simulation.
Structurer le testbench pour une
lecture claire et efficace.
Déclarer tous les signaux
nécessaires de Test Bench.



Process: Générateur d'horloge

47

Génèrer le signal d’horloge
utilisé dans tout le testbench.
Continuer tant que la simulation
n’est pas terminée (done =
FALSE).



Instanciation du DUT

48

Instancier l’entité principale du
parking (top_parking) dans le
banc de test.
Transmetre le paramètre
générique MAX_PLACES au DUT.



Process:  Monitoring

49

Ce processus surveille le parking
pendant la simulation et met à
jour les indicateurs (parking_full,
parking_has_place).
 Il signale quand le parking est
plein et assure un suivi précis de
l’état du système.



Processus principal de test

50

Procédure:  entree_voiture 

OBJECTIVE: Génération de pulses d'un cycle et synchronisation avec les capteurs/moteurs.

🟢 Arrivée Véhicule  🚧 Ouverture Barrière 

👀 Détection Passage
📝 Mise à jour
Compteur (Entrées)

Procédure:  sortie_voiture

🔴 Demande Sortie 👀 Détection Passage

 🚧 Ouverture Barrière 
📝 Mise à jour
Compteur (Sorties)

Simule la présence (Capteur)
Attend l'action du moteur
(Barrière)
Valide le franchissement

Simule la requête de
paiement/ticket
Attend l'ouverture
Valide la sortie physique



SIMULATION

51





Une voiture se présente pour entrer.

Le moteur se déclenche pour ouvrir la
barrière.

Décrémentation du nombre de places
libres sur l’afficheur.

53



Barrière ouverte totalement.

Voiture entrée complètement.

Fermeture de la barrière.

Décrémentation interne (réelle) du
nombre de places libres.

54



Implémentation matérielle :
Du code VHDL au système
matériel fonctionnel

ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

55

PARTIE 7:



Après la synthèse par Quartus, dans le but de valider et optimiser notre code, nous analysons le circuit à deux niveaux  
Ces deux vues permettent d’évaluer la cohérence entre l’intention de codage et l’implantation matérielle finale.

Fournit une vue logique abstraite issue de
l’analyse RTL 

RTL Viewer

Représente la netlist synthétisée et
mappée sur les ressources réelles du FPGA
(LUT, registres, RAM).

Technology Map Viewer

Étape 1 : Analyse & Synthèse

56



 Récapitule l’ensemble des broches
réellement utilisées par le design, avec
leur nom logique, leur position physique et
leur direction (input/output).

Fichier .pin

Fournit une vue globale, graphique et interactive
de l’assignation des pins. Il permet de visualiser
la disposition physique du FPGA, et de modifier
facilement les affectations

Pin Planner

L’assignation des pins permet de relier les signaux logiques du design aux broches physiques du FPGA via le Pin Planner
 Les principales sorties de cette étape sont le fichier .qsf, qui enregistre toutes les contraintes de broches, le fichier .pin,
qui liste le pin-out final après compilation, ainsi que les rapports .rpt d’analyse des I/O.

Étape 2 : Assignation des pins

57



NetList final avec placement et routage
réèl dans le FPGA.

Technology Map Viewer
after Fitting

L’étape de Placement et Routage, assurée par le module Fitter de Quartus, consiste à implanter physiquement le
design synthétisé dans l’architecture réelle du FPGA. Durant cette phase, le Fitter détermine l’emplacement précis
de chaque ressource logique (LUT, registres, blocs mémoire...) puis établit les connexions internes nécessaires en
utilisant le réseau d’interconnexion du FPGA.

Étape 3 : Placement et Routage (Fitter)

58



C’est le fichier qui sera chargé dans le
fPGA lors de la programmation

Fichier bitstream généré

59

 Enfin, nous connectons la carte au PC via
un câble JTAG (USB-Blaster), puis nous
ouvrons l’outil Quartus Programmer afin
de lancer la programmation du FPGA. 

Programmation

Une fois le placement et le routage terminés, Quartus génère le fichier bitstream .sof, qui contient la configuration
finale du FPGA. Ce fichier est ensuite chargé dans le FPGA via l’outil Programmer et l’interface USB-Blaster. Dès la
programmation terminée, le FPGA adopte instantanément la logique décrite dans le bitstream et le système est
prêt à fonctionner.

Étape 4 : Génération du bitstream et programmation du FPGA



Micro-servo
moteur offrant

une rotation
d’environ 0–180°

contrôlée par
PWM

Module
d’affichage

composé de
quatre chiffres 7-

segments
multiplexés. 

FPGA basse
consommation de
la famille Cyclone

IV GX

Module capteur
infrarouge

comprenant un
émetteur et un

récepteur IR

Matériel 

60



Note : Fritzing ne
disposant pas de cartes

Altera/Intel, nous
utilisons une Mojo v3

(FPGA Spartan) comme
équivalent visuel pour le

schéma.

Montage final

61



Conclusion

Au terme de ce projet, nous avons réussi à concevoir et mettre en place
un système intelligent de gestion de parking . L’ensemble des objectifs
techniques fixés ont été atteints : le système assure correctement la
détection des entrées et sorties, le comptage en temps réel du nombre
de places disponibles, l’affichage dynamique sur 7-segments, ainsi que
le contrôle automatique de la barrière selon l’état du parking. Les
simulations réalisées via le testbench ont permis de valider le
comportement global du système avant son implémentation
matérielle.
Ce travail nous a offert une réelle mise en pratique des concepts
essentiels liés à la conception numérique, la programmation VHDL et
l’organisation hiérarchique d’un système embarqué. Il a également
permis de renforcer notre compréhension du fonctionnement des FPGA
et de la modularité dans les architectures matérielles.

62



ÉCOLE NATİONALE DES SCİENCES
APPLİQUÉES DE TETOUAN

GCSE2
2025-2026

Module : Programmation des circuits FPGA

MERCI
POUR VOTRE ATTENTION

Présenté par :
KUNAKA DANIEL
MAKRI YOUSSRA
SIMPORE TAOBATA
SABOR LAILA

ABOUL-MOUMOUNI DIALLO
BOUARRAF DOHA

EL BAROUDI MALAK
MOUHAFID HAFSA

Professeur : JAMAL ZBITOU


