2 (ECOL[E NA,TiONALE DES SCIENCES GCSE2
= | APPLIQUEES DE TETOUAN 2025-2026

Gestion Parking
Intelligent

VHDL
Présenté par :
KUNAKA DANIEL ABOUL-MOUMOUNI DIALLO
MAKRI YOUSSRA BOUARRAF DOHA
SIMPORE TAOBATA ELBAROUDI MALAK
SABOR LAILA MOUHAFID HAFSA

Professeur: JAMAL ZBITOU

Module : Programmation des circuits FPGA

PARKING

g
ol
..

o

g

T e e

|.I-J..
o
a

PARTIE 1
PARTIE 2
PARTIE 3
PARTIE 4
PARTIE S5

PARTIE 6

PARTIE 7

INTRODUCTION

PRESENTATION DU CAHIER DES CHARGES
MODULE COMPTEUR DE PLACES

MODULE AFFICHAGE 7 SEGMENTS
MODULE CONTROLE BARRIERE

MODULE PRINCIPAL

TESTBENCH ET SIMULATION
IMPLEMENTATION MATERIELLE

CONCLUSION

Introduction DD

Dans le cadre du module FPGA, notre projet consiste a concevoir un systeme intelligent et
automatisé de gestion de parking, basé sur une carte FPGA et programmé en langage VHDL.
Ce systeme répond a un besoin réel : automatiser le fonctionnement des parkings modernes afin
d’'assurer une meilleure gestion du flux de véhicules, réduire les interventions humaines et
optimiser |'utilisation des places disponibles.
Le systeme que nous développons doit étre capable de:

e détecter automatiquement I'entrée et la sortie des véhicules,

e compter en temps réel le nombre de places disponibles,

o afficher ce nombre sur un afficheur 7-segments,

e contréler automatiquement une barriére d’accés selon I'état du parking (places disponibles

ou parking plein).

Ce projet combine plusieurs notions essentielles telles que la conception numérique, la
modularité en VHDL, la simulation via testbench. Il constitue une application concrete des
systemes embarqués et des circuits logiques programmables.

4

2% E NATIONALE DES SCIENCES GCSE2 T
IQUEES DE TETOUAN 2025-2026 e e e

PARTIE 1:

Présentation du
Cahier des charges

Spécifications fonctionnelles

Le systeme doit répondre a quatre grandes exigences fonctionnelles :

Comptage automatique des véhicules
— Entrée : -1place | Sortie : +1 place

Affichage en temps réel du hombre de
places disponibles

Interdiction d’entrée si le parking est

Controle automatique de la barriére
plein

d’acces

» Deux capteurs pour détecter les véhicules :un d
I'entrée (voiture_entree), un & la sortie
(voiture_sortie).

Capteurs d’entrée/sortie
véhicule

Capteurs de position et
securité barriere e sensor_open_limit = barriére complétement levée

e sensor_closed_limit — barriere complétement baissée

e sensor_passage — capteur IR ou ultrason sous la barriére
— Interdit toute commande de fermeture tant qu’'un
véhicule est dessous

Contraintes matéeérielles

Le systéme doit fonctionner avec des composants

bien précis: Actionneur de barriére

e 2 sorties pour commander le moteur de la barriéere
— motor_open et motor_close (jamais actifs en méme
temps)

— pilotées via un pont en H L298N ou un servomoteur SG90

Afficheur 7-segments 4
digits multiplexé
* Afficheur 7-segments 4 digits multiplexé
— 7 bits pour les segments (a a g)
— 4 bits pour sélectionner le digit actif

Carte FPGA * Horloge systéme a 50 MHz
e Bouton de reset

Diagramme fonctionnel

Le systeme est organisé de fagon hiérarchique et modulaire autour de quatre blocs principaux:

1.Bloc Compteur de places = gére le nombre de places libres (incrémentation/décrémentation
sécurisée)

2.Bloc Contréle de barriére — machine & états qui pilote 'ouverture/fermeture en fonction des
capteurs et du signal d'autorisation

3.Bloc Affichage 7 segments — convertit le nombre de places en signaux segments
pour I'affichage multiplexé

4.Bloc Principal (top_parking) — module de plus haut niveau qui interconnecte les trois blocs
précédents, contient le générigue MAX_PLACES et génere la logique globale d'autorisation
d'ouverture

Les flux de données circulent comme suit :
e Les sighaux bruts des capteurs arrivent dans le top
e Le top décide si oui ou non il faut ouvrir la barriere
e Le compteur est mis a jour uniguement sur front valide d’entrée ou de sortie
e Le nombre de places est envoyé en continu a l'afficheur

Regles de gestion

e Pour une entrée — voiture_entree = ‘I AND places_disponibles > 0
e Pour une sortie — voiture_sortie = ‘1’ (toujours autorisée, méme si plein) = Cela évite le deadlock
classique : si le parking est plein, on peut toujours sortir !

e Dés que le véhicule a complétement franchi la barriére (sensor_passage retombe & ‘0’ aprés avoir
été activé) et que la barriére est en position ouverte, on commande la fermeture.

e || est strictement interdit de fermer la barriere tant qu’un véhicule est détecté dessous
(sensor_passage = T1)
Cela garantit qu’on ne peut jamais écraser ou coincer un véhicule.
\Ces régles sont implémentées a la fois dans le module top_parking (logique d’autorisation) et dans le
module de contréle de barrieére (machine & états sécurisée).

R4 ECOLE NATIONALE DES SCIENCES GCSE2 DR
APPLIQUEES DE TETOUAN 2025-2026 4t eees

PARTIE 2:

Module Compteur
de places

Module compteur de places - Gestion
du nombre de places disponibles

Le module compteur de places joue un role central

dans le systeme de gestion intelligent de parking. I

garde en mémoire le nombre de places disponibles et

le met a jour en temps réel:

e Il décrémente lorsqu’une voiture entre .

e Incrémente lorsqu’une voiture sort.

e || garantit que le compteur ne dépasse jamais la
capacité maximale ni ne descend en dessous de
ZEro.

\Sa sortie fournit l'information essentielle aux autres
modules, notamment pour l'affichage du nombre de
places libres et pour la décision d'ouverture ou de
fermeture de la barriere.

11

Logique du fonctionnement

o Initialisation (reset synchrone)

e Entrée d’une voiture

e Sortie d'une voiture

e Cas simultané

e Sortie du module

Au front d’horloge (Montant), sirst = 'T, le compteur est
remis & la capacité maximale (99 places).

Si voiture_entree =T et compteur > 0 = le compteur
diminue de 1.

Si voiture_sortie = T et compteur < MAX_PLACES —
le compteur augmente de 1.

Si voiture_entree = 1 et voiture_sortie = T en
méme temps — le compteur reste inchangé
(événements annulés).

La valeur du compteur est envoyée en
std_logic_vector pour étre utilisée par:

o l'afficheur (7 segments ou LCD),

e le module barriére (autoriser/refuser I'entrée).

Interface du module

Nom du signal Type Direction ROle dans le systeme
:) Horloge du systeme. Elle synchronise
clk std_logic Entrée J Y . Y
toutes les opérations du module.
rst std_logic Entrée remet le compteur a sa valeur maximale
: :) Impulsion envoyée quand une voiture
voiture_entree std_logic Entrée P yeeH :
entre dans le parking.
: : :) Impulsion envoyée quand une voiture
voiture_sortie std_logic Entrée P yeeq :
sort du parking.
Nombre de places disponibles, convertit
nb_places_dispo std_logic_vector(6 downto 0) Sortie en vecteur logique pour affichage ou

décision

13

Explication du code VHDL

library 1EEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.NUMERIC STD.ALL:

-- Mieux pour les conversion

Les bibliotheques </ >

L'en-téte du code importe les
bibliotheques IEEE nécessaires.
STD_LOGIC _1164 définit les types
logiques et leurs opérations, tandis
que NUMERIC _STD fournit les
conversions et calculs numériques

14

Explication du code VHDL

Entity </>

e Generic MAX_PLACES: Parameétre
configurable de capacité (par défaut 99).
On peut le modifier sans toucher au code

interne.
entity compteur places is * Portclk (in): Horloge du systéme; toutes
= R e L | = - - =3 -
generic | les actions sont synchronisées dessus.

MAX PLACES : integer := 55 -- Capacite maximale du parking e Portrst (in): Signal de réinitialion

 Port voiture_entree (in): Impulsion

=
#

port |
) clk : in std_logic: -=- Horloge quand une voiture entre; une seule
rst : in std_logic; -- Reset synchrone période d’horloge idéalement.
Ve :u:e_ent:ge - in ?t':_i"r;:: - %;g:ai d'encree d'une voiture e Portvoiture sortie (in): Impulsion quand
volture sortie : in std logic; -- Signal de sortie d'une voiture) = .
nh_;-iac;s_d;:;-: : out -.;i_'_ Jic_vector(e downto () =-- Hombre de places disponibles une voiture sort; une seule pe”Ode
: d’horloge idéalement.
énd compteéur places;

 Port nb_places_dispo (out): Valeur
exportée en vecteur pour
affichage/décision (7 bits suffisent pour
0-100).

15

Explication du code VHDL

Déclarationinterneet </>
initialisation

e Architecture Behavioral: Bloc qui décrit
le comportement logique du module,
sans détailler la structure physique des
composants internes

e Le signal compteur est comme une
petite mémoire qui garde le nombre
de places libres. Il est borné entre 0 et
la capacité maximale pour éviter les
erreurs, et au démarrage il est initialisé
a MAX_PLACES, ce qui correspond a un
parking vide avec toutes les places
disponibles.

architecture Behavioral of compteur places is
signal compteur : integer range 0 to MAX PLACES := MAX PLACES:;
begin

16

Explication du code VHDL

process(clk)

b s Processus de comptage </>
-- Reset synchrone etreset
1f rst = "1" then
compteur <= MAX PLACES; Mon process est cadencé par I'horloge.
Au reset, le compteur revient a la
-- Cas simultané : entrée et sortie en méme temps - pas de changement capacité maximale. Si une voiture entre,
elsif voiture entree = 'l' and voiture_ sortie = 'l' then on décrémente:; si une voiture sort, on
Fompteur o= compteur; incrémente; et si les deux arrivent en
-- Sortie seule incrémentation si pas déja au max meéme temps, on ne change rien.
elsif voiture sortie = '1' and compteur < MAX PLACES then L'ordre des conditions garantit qu'une
compteur <= compteur + 1; seule action est exécutée par cycle.
-- Entree seule décrémentation si pas déja a 0
elsif voiture entree = 'l' and compteur > 0 then
compteur <= compteur - 1;
end if;
end if;
end process;

17

Explication du code VHDL

Conversion de la valeur (/ %
vers la sortie binaire

e J'ai convertis l'integer en unsigned
sur 7 bits, 7 bits car 2A7=128 couvre

B . . 1% - r 1AF 0-99.
nb places dispo <= std_logic_vector | (compteur, 7)); -- 7 bits pour 0-10(. . .
e J'ai convertis unsigned en
end Behavioral; std_logic_vector pour compatibilité

avec les ports et les afficheurs

e J'ai gardé la logique interne en
integer (simple, sdre) et ne convertis
gu’en sortie pour I'affichage (7
segments)

18

W ECOLE NATIONALE DES SCIENCES GCSE2 e e e e
s====| APPLIQUEES DE TETOUAN 2025-2026 e eses

- 0000
PARTIE 3: EEEE

Module affichage 7 e
i e g e
segments 7. 1. . 1.

Module Affichage 7 Segments

Son réle est de montrer en temps réel le nombre de places
disponibles a I'utilisateur.

Objectifs
e Afficher une valeur comprise entre 0 et 99

e Utiliser un afficheur a cathodes communes avec segments
actifs haut.

e Masquer le zéro en téte
e Assurer un affichage stable et lisible grdce au multiplexage.

20

Conversion binaire = BCD

Le compteur fournit une valeur binaire (count_in).
Le module transforme cette valeur en deux chiffres BCD :
unités et dizaines.

Multiplexage

AXxes de
fonctionnement

e Pendant 1 ms — affiche unités.
e Pendant 1 ms — affiche dizaines.
e L'ceil humain croit que les deux sont allumés en méme temps.

Masquage du zéro en
téte

Si la valeur est <10, on n'affiche pas la dizaine

Décodage BCD — segments

Chaque chiffre BCD est traduit en segments allumés.
e Exemple : BCD “0010” — affiche “2" en allumant les segments q,
d,e g,c.

Explication du code VHDL

le contréleur principal de 'afficheur 7 segments.

ENTITY Entrées:
: clk: horloge du FPGA (50 MHz).

entity sevenseg_ctrl is rst:reset actif haut.

port (count_in : valeur binaire (0 & 99) a afficher.
clk . in STD_LOGIC: rloge 50 MHz Sorties :
okt 5 s cathode : sélectionne quel digit est actif (unités
count_in : in UNSIGNED(6 downto 8); saleur a affi . .99) ..
cathode : out STD_LOGIC_VECTOR(2 downto 0): cathodes (actif & 1) ou dizaines).
seg . out STD_LOGIC_VECTOR(6 downt tif a 1) seg : contréle les 7 segments (a—g).

);

end sevenseg_ctrl;

Sighaux internes

e refresh_cnt: compteur pour gérer la vitesse du
multiplexage.

refresh_cnt : UNSIGNED(15 downt) := (others => - digit_sel: bit qui alterne entre unités et dizaines.

digit_sel : STD_LOGIC; d_units : chiffre des unités en BCD.

d_units : STD_LOGIC_VECTOR(3 downto 0); d_tens: chiffre des dizaines en BCD.

d_tens : STD_LOGIC_VECTOR(3 downto 0); current_bcd : chiffre actuellement affiché (selon

current_becd : STD_LOGIC_VECTOR(3 downto 0); digit_sel).
23

le contréleur principal de 'afficheur 7 segments.

Bloc 1 - Compteur de rafraichissement

process(clk, rst)

begin

1¥ rst

then

refresh_cnt <= (others =>) -
elsif rising_edge(clk) then
refresh_cnt <= refresh_cnt + 1;

end 1f;

enda process

digit_sel <= refresh_cnt(15);

process(c
varia
varia
begin
T

u :
T =
d_uni
d_ten

end proce

Bloc 2 - Conversion binaire = BCD

ount_in)
ble v : integer range te -
ble u, t : integer range 0 to 9;

to_integer(count_in);

> then v := = end 1f;

vV mod -

(v /) mod :

ts <= STD_LOGIC_VECTOR(to_unsigned(u,
s <= STD_LOGIC_VECTOR(to_unsigned(t,

L
1

"

));
));

00 0000000000000 000000000000000 9,0000000000000000000000000000009009000

process(clk, rst)
On crée un processus qui réagit quand I'horloge (clk) change ou
quand le reset (rst) est activé.
if rst ="1 then
Si le reset est activé, on remet le compteur refresh_cnt a zéro.
Sinon, a chaque front montant de I'horloge (50 MHz), on exécute le
code suivant
refresh_cnt <=refresh_cnt +1;
Le compteur refresh_cnt s’'incrémente de 1 a chaque cycle
d’horloge.
digit_sel <= refresh_cnt(15)
On prend le bit 15 du compteur pour décider quel digit afficher :
Si digit_sel = 0 = unités.
Si digit_sel =1 — dizaines.

e Ce bloc s’exécute dés que count_in change.
e On crée une variable entiere pour stocker la
valeur.
On déclare deux variables locales dans le

process:uett

On convertit la valeur binaire en entier.

On limite a 99 pour éviter les erreurs.

On calcule les unités (reste de la division par
10). 24

On stocke ces chiffres en BCD (4 bits chacun).

le contréleur principal de l'afficheur 7 segments.

Bloc 3 — Sélection du digit + masquage du zéro

: Quand digit_sel = 0, le bloc active le digit des

* unités et envoie le chiffre des unités (d_units)

- vers le décodeur.

begin -Quand digit_sel = 1, il active le digit des
v_int := to_integer(count_in); - dizaines et envoie le chiffre des dizaines

1f digit_sel = the °
935 = w - (d_tens).
cathode <= s == unites —

current_bcd <= d_units;

process(digit_sel, d_units, d_tens, count_in)
variable v_int : integer range to .

e Si la valeur a aofficher est inférieure a 10, il
n'y d pas de dizaine a montrer.

2L5

cathode <= - dizaines

if v_int < 10 then e Dans ce cas, le bloc éteint le digit des
kil s et dizaines pour éviter d'afficher un zéro &
2Lse

current_bed <= d_tens; gauche.

end 1f;

Le chiffre choisi (unités ou dizaines) est stocké
dans current_bcd

P " - i -
end 14 P

end pI'OCessS,

Bloc 4 — Décodage

On envoie current_bcd au décodeur bed_to_7seg.
Le décodeur traduit le chiffre en segments allumeés.
Exemple : current_bcd = "0010" — affiche le chiffre “2".

decoder_inst : entity work.bcd_to_7seg
port map (
bcd => current_bcd,

seg => seg 25

)E

Décodeur BCD vers 7 segments

Library IEEE;
use IEEe.STD_LOGIC_1164d.ALL;

e Entrée bed : chiffre codé sur 4 bits (exemple :

entity bcd_to_T7seqg is “0010" = 2).
Port (e Sortie seg : vecteur de 7 bits pour les
bcd : in STD_LOGIC_VECTOR (3 downto 0@); — chiffre BCD (0 a 9)

| _ | segmentsaag.
seq : out STD_LOGIC_VECTOR (6 downto ©) -- segments a a g (actif haut)

);
end becd_to_7seq;

= - 00 0000000000000 0000000000000 0 000000000000 0000 0O°O°O°®OSOOSDOSPOIP
architecture rtl of bcd_to_7Tseqg is

begin

process(bcd) -Des que bed change, le contenu du process
Ueg.l , estrecalculé.
case bcd is

when "0000" => seg <= "1111116"; — @ : abc d e f -le case Qg|t comme une table de

when "0861" => seg <= "0116686"; — 1 : b c .

when "8016" => seg <= "1101101"; — 2 : a b d e g correspondance::

when "8011" => seg <= "1111601"; —— 3 : abc d g Si bed ="0000" — on allume les segments

when "0160" => seqg <= "0116011"; —— U4 : b c ¥ g .

when "0101" => seg <= "1011011"; — 5 : ac d g pour afficher 0...etc

when "0110" => seg <= "1011111"; - 6 : acd e f g

when "0111" => seg <= "11180080"; — 7 : a b c

when "1860" => seg <= "1111111"; —— B8 : tous les segments

when "10801" => seg <= "1111811"; —— 9 : abcd f g

when others => seg <= "0000000"; -- éteint : aucun segment

end case;
end process;
end rtl:

Module de Contréle de
Barriere : Automatisation
d'Ouverture/Fermeture

le module de contrbéle de la barriere,
'élément physique qui gere l'acces des
véhicules au parking.

@ Capteurs et actionneurs

@ Automatisation du systeme

PARTIE 4 13

Objectifs et Spécifications Fonctionnelles

Assurer louverture et la fermeture séquencée et sécurisée de la barriere en réponse

aux commandes du module principal et
aux capteurs de position. @

28

Entrées: Capteurs & Sorties : Commandes
Commandes Moteur

1. trigger_open: 3. sensor_closed_limit: 1. motor_open:
Commande douverture venant du Capteur de fin de . Active le moteur pour
module principal. mouvement (barriére fermée). . l'ouverture.
2. sensor_open_limit: 4. sensor_passage : . 2. motor_close:
Capteur de fin de mouvement Capteur de passage du : Active le moteur pour la
(barriére ouverte). véhicule (déclenche la fermeture). - fermeture.

Conception:
Une Machine

a Etats Finis
(FSM)

IDLE_CLOSED : Barriere fermée,
attente d'un trigger_open

OPENING : Moteur d'ouverture
actif, attente de
sensor_open_limit

IDLE OPEN : Barriére
ouverte, attente de
sensor_passage

CLOSING : Moteur de fermeture actif,
attente de sensor_closed_limit

ouvrir-attendre-fermer
modélisé par une FSM,
comportement
déterministe et sécurisé.

Implémentation VHDL

Utilisation du modele a
trois processus : registre
d'état, logique de
prochain état et logique
de sortie pour une
conception synchrone et

claire.
29

Détails de l'Implémentation VHDL

’ : |
Entité VHDL e ne Processus 1: Registre s Fe
d'Etat
L'entité définit linterface : horloge, reset, 4 Ce processus synchrone gere la transition
entrées de capteurs/commandes et 2 d'état sur le front montant de I'horloge.

sorties de moteur.

Nous avons choisi un Reset Synchrone
pour garantir la stabilité de I'état initial.

Processus 3 : Logique de - 1.

Sortie

Ce processus combinatoire est simple : |l

active motor_open uniquement dans I'état

OPENING et motor_close uniguement dans

'état CLOSING. Dans les états IDLE, les

moteurs sont désactiveés. 30

Détails de l'Impléementation VHDL

A"

Entité VHDL

L'entité définit l'interface : horloge, reset, 4
entrées de capteurs/commandes et 2
sorties de moteur.

ENITITY contro le_l:arriere 13

PORT |
-- Signaux de contrdle
clk : IN STD LOGIC; -- Horloge (pour la logique seguentielle)
rst : IN S5STD LOGIC; -- Reset synchrone (pour initialiser)

-- Entrées (capteurs et commandes)

trigger open : IN 51D LOGIC; -- Ordre d'ouverture (vient du module principal)
Sensor_passage : IN S5TD _LOGIC; -- Capteur: la voiture €8t passee

sensor open limit : IN STD LOGIC; -- Capteur: la barriere est en position haute
sensor _closed limict : IN STD LOGIC; —-— Capteur: la barriere est en position basse

-— Sorties (commandes moteur)
motor open : QUI 5TD LOGIC; -- Commande au moteur: Quvrlir

— — e e

motor_close : OUT STD_LOGIC -- Commande au moteur: Fermer

) ¢

END ENTITY controle barriere; 31

Détails de l'Impléementation VHDL

-— 1. Definition des états de notre FSM
IYPE state type 15 |

Processus 1: Registre -1

d'Etat

IDLE CLOSED, —— La barriere e3t fermee =t attend . .
p— . _ _ Ce processus synchrone gére la transition
OPENING, -- La barriere est en tralin de s'ouvrir d'état sur e front montant de lhorloge.
IDLE OPEN, -- La barriere =3t ouverte et attend le passage Nous avons choisi un Reset Synchrone
CLOSING -- La barriere est en train de se fermer pour garantir la stabilité de l'état initial.

-— 2. Signal interne pour memoriser l'etat actusl =t le prochain £tat

JIGNAL state, next state : State type;

-— PROCESS 1: Logique Séquentielle (Registre d'état)

—— (e process memorise l'etat actuel.

-— Beset SYNCHRONE: le& reset &3t &valus sur le front d'horloge
state_register proc : PROCESS (clk)

BEGIN
IF rising =dg=(clk) THEN —— Detection du front montant
I¥ (rst = "1") 1HEN
state <= IDLE CLOSED; -- Etat initial de reset
ELSE
state <= next_state; -—- Mémorisation du prochain etat
END IF;
END IF;

32
END PROCESS state register proc;

Détails de l'Impléementation VHDL

Processus 3 : Logique de - 1

Sortie

Ce processus combinatoire est simple : il
active motor_open uniquement dans 'état
OPENING et motor_close uniquement dans

'état CLOSING. Dans les états IDLE, les HHEH IjLE DPEH
moteurs sont désactivés. - e
IE!GEE!I_DI}ER <= U7,

motor close <= "'0°;

-— PROCESS 3: Logique Combinatoire (Logique de sortie) WHEN CLOSING
-— Ce process déetermine les sorties (commandes moteur)
-- en fonction de l'état actuel.

output_logic_proc : PROCESS (state)

motor_open <= '0';
motor_close <= 'l1'; —— On active le moteur pour fermer

GIN -
BEGH , . § § WHEN OTHERS =>
-- Valeurs par defaut pour eviter les "latches _ P
o motor_open <= '0';
motor open <= '0°; = _
— . motor close <= '0°';
motor close <= "0°; -

END CASE;

CASE state IS END PROCESS output_logic _proc;

WHEN IDLE CLOSED
motor_open <= '0';
motor _close <= '0°';

WHEN OPENING =>
motor open <= °
motor close <= "I

; == On active le moteur pour ouvrir

L
-

33

i
=] -

Logique de Transition (Prochain Etat)

. y S 'A
Processus 2 : Prochain

Etat
C'est le coeur de la logique de contrdle. I
détermine le prochain état en fonction de

'état actuel et des entrées.

! |
Transition 2 : Attente e

De OPENING a IDLE _OPEN : La transition se

fait uniquement si sensor_open_limit = 7.

Le systeme attend la confirmation
physique que la barriere est bien ouverte
avant de s'arréter.

S 'A
Transition 1 : Ouverture

De IDLE_CLOSED a OPENING : La transition
se fait uniguement si trigger_open = 1.
Cela simule la réception de l'ordre
d'ouverture.

S 'A
Transition 3 : Fermeture

De IDLE_OPEN a CLOSING : La transition se
fait uniquement si sensor_passage = 1.
Cela garantit que la barriere ne se ferme
quapres le passage effectif du véhicule.

34

Logique de Transition (Prochain Etat

-= PROCESS 2: Logique Combinatolire (Calcul du prochain &tat

-= C& process calcule l'#tat suivant en foncticon de l'#tatc

-= ACTUSL &T des &ntiees (Capteaurs).

next state_logic_proc FROCESS (state, trigger open, Sensor_passage, sensor open limit, sensor closed limic

BEGIN

-= Far defaurt, on reste dans le méme #TAC
:'Li:it_ltltl‘ = ETATE.

CASE sgstate IS -= EZtat 4: Barriere en fermeture
-= Etat 1l: Barriére fermée WHEN CLOSING =
WHENM IDLE CLOSED = IF (sensor closed limit = 'l') THEN
IF t::Eq-r_:pin - "1%") THEM next_ state <= IDLE CLOSED; -- On est arrivé en bas, retour
next state = QFENING, == On passe & l'ouverture ZND IF;
END 1IF
-= Cas par defaut (sécurite)
== ETAT 2: Bazriscze &n cuverturs WHEN OTHERS =
WHEM ODENING = next_ state <= IDLE CLOSED;
i1f (senscr cpen limit = "1') THEN
next state <= JDLE QFEN: -- On est arrive en haut END CASE;
END IF: END FROCESS next state logic proc;
-= Etat 3: Barriere cuverts
WHEN IDLE OFEN =
IF (senscr_passage = "1°) THEN
next_state <= CLOSING; -- La voiture est passés, on ferms
ERD IF:

35

Vérification du Comportement

Le testbench (tb_controle_barriere) est essentiel pour valider que le module respecte
les spécifications fonctionnelles avant l'intégration.

Il simule les signaux d'entrée et
observe les sorties.

Résultats de

Scénario de Test i)
Simulation

‘..‘..............................

1. Reset : Vérification de I'état initial (IDLE_CLOSED).

2. Sequence d'Ouverture : Envoi de trigger_open, attente de
motor_open = T, puis envoi de sensor_open_limit = T pour vérifier
I'arrét du moteur.

“ fo_controle_barriere /s _sengor_dosed _lmit

¢ fb_controle_barrierefs_molor_open

BN« .

E_
L=
{2
L=
=

3. Séquence de Fermeture : Envoi de sensor_passage = T, attente de
motor_close = T, puis envoi de sensor_closed_limit = T pour vérifier
le retour a I'état initial.

W
(o))

Vérification du Comportement

7 trigger_open -> motor_open -> sensor_open_limit = motor_open s'arréte ->

Résultats de
Simulation

sensor_passage -> motor_close -> sensor_closed_limit -> motor_close sarréte

ECOLE NATIONALE DES SCIENCES GCSE2
APPLIQUEES DE TETOUAN 2025-2026

PARTIE 5:
Module principale

% compteur_places

@ sevenseg_counter
@ controle_barriere

Réle du module principal : top_parking

Ce module ne fait pas lui-méme les calculs ni
I'ouverture physique,
mais il organise, contrdle et connecte tous les autres

Sans top_parking, les modules seraient isolés et ne
pourraient pas communiquer.

modules.

Le top_parking recgoit toutes les informations venant : Il contient la logique de décision la plus importante
des capteurs (voiture entrée, voiture sortie), des Il synchronise tous les signaux

quteurs de bqrriérel du reset Il convertit les données pour I’GfﬁCthe

et de I'horloge. Puis il décide quel sous-module doit Il gere la détection “parking plein”

réagir. Il ne calcule pas lui-méme, mais il dirige
'ensemble du systeme.

39

L'entité top_parking

]'.l ibrary IEEE: : Entrées capteurs [commandes

use JIEEE.STD LOGIC 1l164.ALL; °
— p— . ' | T ROl
use IEEE.NUMERIC STD.ALL:; ; olene yPe o
. , : : Demande d'entrée d'une
ey . o voiture_entree in std_logic _
entity Ttop parking 1s . voiture
generic| " voiture_sortie in std_logic Demande de sortie d'une
MAX PLACES : integer := 48§ . - - voiture
) : . : : Capteur qui détecte qu'une
: sensor_passage in std_logic ‘]
POXT (. voiture est passée sous la barr
clk : 1n std_logic; o - . . Indique que la barriére est
) ° sensor_open_limit in std_logic .
st : 1N Std logic; . complétement ouverte
B = . W e = _t = = 5 il | ! = ° H [
-= Capteurs encrAPe / sortie voitures o L , , Indique que la barriére est
. sensor_closed_limit in std_logic . .
voiture entree : in scd logic; . completement fermée
s s = . = = ..'.b. vvvvvvvvv .vv--v---vv: vvvvvvvvvvvvvvvv U U UYUYUUUUUUUUUUUUUUUUUUUOUUOUUWUUWwUWOUW®W O
volture Sortlie . f n std_logic; * Sorties vers actionneurs [afficheur
-= apteurs barrii re .
Sensor passage s 1N 31::1_1-: gic; . Signal Type Rble
sensor open limit : in std logic: :
sensor closed limit : in std logic; . cathode out std_logic_vector(3 downto active le digit a afficher
—— ;'Lffl::ﬁ.'el'.;: o | ga l;"Il‘.E!"."E-S E 0) (UnitéS/dizaineS)
= * B | 1 = n = = - = = - L]
cathode : out std logic vector (3 downto 0): . e out std_logic_vector(6 downto Segments allumés pour
seg : out std logic wvector (6 downto 0U); . & 0) afficher le nombre de places
-= COommandes moteur barrii re . , ,
. , Active le moteur pour ouvrir la
motor open : out std logic: . motor_open out std_logic barriere
motor close : out std_logic .
) : . . Active le moteur pour&gwer
¥ . motor_close out std_logic .\
' . la barriere
end top parking; .

0 0000000000000 0000000000000 0 0 0 0 ¢

Déclaration des signaux internes

. c'est ici que le module principal crée des signaux intermédiaires pour faire communiquer
(]
» les autres modules entre eux.

architecture structural of top_parking is : 1. nb_places_dispo:
-- » C'est le nombre de places restantes, envoyé par le module compteur_places.
== SATTNRE JNEEEDES . 2. count_unsigned:

» C'est nb_places_dispo, mais converti en format unsigned au lieu de

signal nb places dispo @ std loglc vector (& downto 0); »
51;:.-11 :-:-:i:._::::r;::ei : unsigned (€ :l'_-u.':‘.:f D) 2 } . std_logic_vector.
signal parking has place : std logic: * 3. parking_has_place: C’est lui qui décide si on autorise I'entrée des voitures.
signal trigger open : std logic: . 4. trigger_open : C'est le signal final qui dit : « Ouvre la barriere maintenant !
)) . 5. synchronisation des entrées : Les signaux venant de I'extérieur (capteurs,
— jr?chr.:lsazljn des sncrAles (recommandal) :bOLﬂonSm)
i:giii m:t:;j:“::j::i : - :t_i - ~ sont asynchrones donc on doit les synchronisés

Comme les signaux venant des capteurs arrivent de maniére asynchrone,
on utilise un petit process synchronisé avec I'horloge pour les stabiliser.
e Ce process est exécuté a chaque front d’horloge donc synchronisation avec clk
e On capture les signaux uniquement lorsqu’il y a un front montant.
e Sireset actif, on remet les signaux synchronisés a 0. C'est important pour
démarrer dans un état stable.
On transfere les signaux externes vers des signaux internes stabilisés.

Sync _proc : process(clk)
begin
if rising edge(clk) then
if rsc = '"1' then
voiture entree sync <= '0';
voiture sortie sync <= '0';
else
voiture entree sync <= voiture entree;
volture sortie sync <= Vvolture sortie;
end if;
end if;
end process;

41

0 000000000000 000000000000000000 0000 vvyuvy

0 0000000000000 0000000000000 0 0 0 0 ¢

Vue d’ensemble : les 5 blocs du parking intelligent

1) Module compteur_places
——— Son role : gérer le nombre de places du parking

-= 1) Compteur places * || compte combien de places sont encore disponibles.
“““““““““““““““““““““““““““““““““ * Quand une voiture entre = le compteur décrémente

comptéur inst : &ntity work.comptéeur laces . . -
» - et = » > * Quand une voiture sort — le compteur incrémente
generic map (MAX PLACES =3> MAKR PLACES) .. P
szt map(- - || utilise clk pour avancer et rst pour se réinitialiser
clk => clk, e nb_places_dispo = résultat en binaire (0-99)
rat => rat,
voiture entree => voiture entree_ sync, 2) Conversion et détection
voiture sortie => vVolture sortie sync, Son réle : transformer la valeur binaire en un nombre utilisable pour
nb places dispo => nb places dispo comparer
' e nb_places_dispo est en std_logic_vector (simple ensemble de bits)
___ e On le convertit en unsigned (nombre entier binaire)
—— 2} Conversion et diBtection * Ensuite, on peut faire :
___ count_unsigned > 0
count_unsigned <= unsigned(nb_places_dispo);: — Si oui — le parking a encore de la place
parking has place <= 'l' when count unsigned > 0 else '0'; — Si non — parking plein
T s e e e e e e 3) Logique d’ouverture corrigée
= Y T.~erd s Ly pep— & CORBRTEAF e . . . e . , .
71 LOGLQuUE douveItuie LARRILAL Son réle : décider si la barriére doit s'ouvrir ou non
e S : _ La barriere doit s'ouvrir si :
-=- EnctrA®e : sesulement si places disponibles . .
-= Sortie : toujours autor i sj\De (sinon deadlock si parking plei ‘/ Une voiture veut entrer ET Il reste des ploces
trigger open <= (voiture entree sync and parking has place) / Ou une voiture veut sortir (toujours autorisé)

Or Yoiture sortie syne: 42

Vue d’ensemble : les 5 blocs du parking

barriere inst : entity work.controle barriere

port map (
clk => clk,
rst => rst,

I
'.I'_.'

trigger open trigger open,
Sensor_passage sensor_passage,
sensor open limit sensor _open limit,
sensor closed limit => sensor closed limict,
motor _open => motor_open,

mutu:_clu:e - mutur_clnse

l
"-,"

il
"-,"

sevenseg inst : entity wWork.sevenseg counter

port map (
clk => clk,
rst => ISt,
count in => count unsigned,
cathode => cathode,
seqg => Seg

end structural;

4) Module contrdle_barriére
e Son rdle : faire bouger la barriere
e Ouvre la barriere si trigger_open =1
e Attend le capteur sensor_open_limit (barriére complétement
ouverte)
e Attend que la voiture passe (sensor_passage)
* Ferme la barriere
e Attend sensor_closed_limit (barriére complétement fermée)
e active le moteur dans le sens d’ouverture
e active le moteur dans le sens de fermeture

5) Module d'affichage 7 segments
Son role : afficher les places disponibles sur I'afficheur
e count_in = valeur des places disponibles en binaire
e Le module convertit ce nombre en chiffres (dizaines + unités)
o |l utilise:
e seg(6 downto 0) : quels segments allumer
e cathode(3 downto 0) : quel digit afficher (multiplexage)

43

Schéma du systeme top_parking

top_parking
Car entry/exit Data conversion
Sensors and detection

voiture voiture
entree | _sortie B
Opening
logic
g

nb_places_dispo 7-segment
trigger_open display

Barrier
module

sensor_passage
sensor_open_limit
motor_closed_limit

display

motor
close

7-segment

44

ECOLE NATIONALE DES SCIENCES GCSE2 e e e
APPLIQUEES DE TETOUAN 2025-2026 = e e e e

PARTIE 6:

Testbench
& Simulation

Déclaration des signaux et constantes de Test

JARCHITECTURE test OF tb top parking IS

CONSTANT CLK PERIOCD

STANT MAX PLACES

SIGNAL clk : STD LOGIC := '0';

SIGNAL rst : STD LOGIC := '0';

SIGNAL done : BOOLEAN := FALSE;

—— Capteurs (INPUT) ® |n|t|ql|ser IeS p(]r(]metl’es
SIGNAL volture entree : STD LOGIC := '0';

SIGNAL voiture sortie : STD LOGIC := '0'; essentiels de la simulation.

SIGNAL sensor passage : STD LOGIC := '0';

SIGNAL sensor open limit : STD LOGIC := '0"; PY

SIGNAL sensor closed limit : STD LOGIC == "1"; Structurer Ie teStbenCh pour =l
__ Sorties (OUTPUT] lecture claire et efficace.

SIGNAL motor open : STD LOGIC; P .

SIGNAL motor close : STD LOGIC; e Déclarer tous les SIgnaux
SIGNAL cathode : STD LOGIC VECTOR (3 DOWNTO 0O);]

SIGNAL segq : STD LOGIC VECTOR (6 DOWNTO 0); nécessaires de Test Bench.

—— Signaux de monitoring

SIGNAL places disponibles : INTEGER := MAX PLACES:;

SIGNAL nb voitures entrees : INTEGER := 0O;

SIGNAL nb volitures sorties : INTEGER := 0;

SIGNAL nb tentatives refusees : INTEGER := 0;

SIGNAL parking full : STD LOGIC := '0";

SIGNAL parking has place : STD LOGIC := "1"; 46

Process: Générateur d'horloge

clk process : PROCESS
BEGIN

 WHILE NOT done LOOP e Générer le signal d’horloge
. clk <= '0";

utilisé dans tout le testbench.
WAIT FOR CLK PERIQD -

clk <= '"1"'; e Continuer tant que la simulation
WAIT FOR CLK PERIOD / Z; n‘est pas terminée (done =
END LOOE; FALSE).
- WAIT;

END PROCESS;

47

DUT

: ENTITY work.top parking

 GENERIC MAP (

)

MAX PLACES => MAX PLACES

. PORT MAP (

- clk =>
. rst =>
. voiture entree =2
. voiture sortie =>
~ sensor passage =>
. sensor open limit =>
~ sensor closed limit =>
. motor open =>
. motor close =2
. cathode =>
. seg =>
)i

Instanciation du DUT

clk,

rst,

volture entree,
volture sortie,
Sensor passage,
sensor open limit,
sensor closed limit,
motor open,

motor close,
cathode,

seqg

e Instancier l'entité principale du
parking (top_parking) dans le
banc de test.

e Transmetre le parametre
générique MAX_PLACES au DUT.

48

Process: Monitoring

monitoring : PROCESS (clk)

| VARIABLE prev parking full : STD LOGIC := '0O';
BEGIN
| IF rising edge(clk) THEHN

-- Calculer les places disponibles

places disponibles <= MAX PLACES - nb voitures entrees + nb voitures sorties; ® Ce prOCGSSUS Survei”e Ie pOrklng
pendant la simulation et met a

—— Mise & jour des indicateurs

IF places disponibles = 0 THEN I i i .
| parking_full <= '1'; jour les indicateurs (parking_full,
| | parking_has_place <= '0';
=N parking_has_place).
| | parking_has_place <= '1';) .
- END IF; e |l signale quand le parking est
| -=- Afficher quand le parking devient plein . o e s e
IF parking_full = '1* AND prev_parking full = '0' THEN plein et assure un suivi précis de
E REPORT "*** PARKING FULL ***" SEVERITY NOTE:;
END IF; 'état du systeme.
prev _parking full := parking full:
END IF;

END PROCESS;

49

Processus principal de test

OBJECTIVE: Génération de pulses d'un cycle et synchronisation avec les capteurs/moteurs.

Procédure: entree_voiture
O Arrivée Véhicule - » %% Quverture Barriere

v
~ Mise a jour

/ & A A 1
Compteur (Entrées) Détection Passage

e Simule la présence (Capteur)

o Attend Tlaction du moteur
(Barriere)

e Valide le franchissement

Procédure: sortie_voiture
@ Demande Sortie - » - Détection Passage

v
~ Mise a jour

. e 7/ s
Compteur (Sorties) “2 Ouverture Barriere

e Simule la requéte de
paiement/ticket

e Attend l'ouverture

e VValide la sortie physique

50

SIMULATION

Ll

-zl & LR -4 || SBEET | & - A s -5 (X1l (& (&4
132222 2-4-9@-Q|| [\ Bp U | LTI F
= 4E + = | Sewrd v ® || Qe B2 i B

e

"- %

|

(0110611 | 1111001

File Edt View Add Format Tools Bookmarks Window Help

--m-m=
938 -8 sRBO2 [0-AE | SREAN| &
tat t-a-t|a-q-0@-9|x o3y b
3 - 4E - B | Sewch pne|QQasa%
'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIE!IIIIIIIIIIIIIIIIIIIIIII

fib_top_parking fdk
© [_top _parkngrst

feb_top_parkang fdone
" [_top_parking feaiture _enitree
ftb_top parkng fvoiture _sorbe

Une voiture se présente pour entrer.

ftb_top_pariang fsensor_passage

4 [b_top_parking/sensor_open_lmit
I fib_top parking fsensor_dosed lmit
| ftb_top_pariang/motor_open
fb_top_parkangmotor_dose

Le moteur se déclenche pour ouvrir la

ﬂnﬂunﬂﬂﬁﬂu

barriéere.

g

fib_top _parking fcathade

g

‘b _top_parking/eeg

' fb_top_parkingplaces_deponibles
Mt _top paring/nb_voibres_entrees
fib_top_parkinginb_voitures _sorbes

' fb_top_parkingnb_tentatrees_ref...
fib_top_parking fparking_ful

* fb_top_parkangpariong_has_place

IE I:l.ll'!'.-l:ll' i :-!I'ZI 4.3 ng

Ll | 2ld)y

Ops to 17852598 ps fib_top parang/nb_voitures_entrees

Décrémentation du nombre de places
libres sur I'afficheur.

== O D D e L e

53

File Eddt View Add Format Teools Bookmarks
e Dl — — — — — — — — — — — — —
-l @ L RBRD 7| O-dxF | 1750 na¥ K] AR D "ol T &

tat| -2t 2-B-CRFT LT F S
Saicy s oo v M

Barriére ouverte totalement.

Voiture entrée completement.

Fermeture de la barriere.

Décrémentation interne (réelle) du

nombre de places libres.

IE El..l'!'.-l:ll 1 :-!I.. -1-.2_'-T'r'.'.
: 54

Ops to 17852598 ps ":l:-_tu:r_p.u'lr.r'-;ﬁ'b_v:ut.:

ECOLE NATIONALE DES SCIENCES GcSE2 @ e s s

APPLIQUEES DE TETOUAN 2025-202¢6 @ i e e e s

PARTIE 7:

Implémentation materielle:
Du code VHDL au systeme
matériel fonctionnel

Apres la synthese par Quartus, dans le but de valider et optimiser notre code, nous analysons le circuit d deux niveaux
Ces deux vues permettent d’évaluer la cohérence entre l'intention de codage et I'implantation matérielle finale.

«RTL Viewer

Fournit une vue logique abstraite issue de
I'analyse RTL

e
[o] D
s _pumnngn [

Technology Map Viewer

Représente la netlist synthétisée et
mappée sur les ressources réelles du FPGA
(LUT, registres, RAM).

[T P STNRT Lo BLeec g

L'assignation des pins permet de relier les signaux logiques du design aux broches physiques du FPGA viad le Pin Planner
Les principales sorties de cette étape sont le fichier .gsf, qui enregistre toutes les contraintes de broches, le fichier .pin,
qui liste le pin-out final aprés compilation, ainsi que les rapports .rpt d’analyse des 1/0.

Homa s 4 Compilstion Report - proj2 a
‘able of Contents U I Fin- Oul File
59 Resource Utikzation by Entity . - . , . .
» (23 Stabe Machines PFin Mame/Usage : Location Dir : I/0 Standard : Woltage : IS0 Bank @ User hssignment
@ optimEstion Resulls 00 | T T T T T T T T T T T T e e
% (33 Poramater Settings by Enbity nst TDO 2 Al GutpueE 9
=9 Elspsad Time Per Partition THS R input : 9
i) Massages TDI ;A3 input i 9
o — ~ALTERA_DCLE-~ i R4 : output @ 2.3 W H i B : N
] Summan *H.LTEHA_DP.TH':I* ! REJERVED INPUT_WITH_WEAK_FULLUF : RS :input @ 2.5 W : I
i W
s
'.'np:ms'cmmm RESERVED INPUT WITH_WERK_PULLUF : A# : B
= [0 Assig 2 Weenings RESERVED INPUT WITH WEAK FULLUEF : AT HI -
w B Incraimtsl Compllation Sedtion RESERVED INPUT WITH WERE PULLUE : AE HI -
T Incemental Compilation Freservation Gb':l:” I R f 7
8 Incremental Compilsbion Fartiton Set | | S0 _ _ - A0 : 2 7
=% Incremental Compilstion Flacement F sensor closed limit ¢ All s imput : 2.5 W I N
% POt File meTer_close : AlZ Doowtput - 2.3 W : 7 P N
3 (3 Rasource Section seg4] : Al2 Pooutput ;2.3 W : 7 M
3 1O Reles Section GND ; Bl : gnd :
= Device Opains GHD : B2 : lgn-:l :
1 Gperating Settings and Condeions 'EL‘H : B3 : imput HE)
B Messages GHD ! B4 : gnd : : : H
1 Suppressed Messages ~ALTERA_ASDO- ! RESERVED INFUT WITH WERK FPULLUP : BS : impuc : 2.5 V¥ : .
-) Adsembler N e
, .-i TimeQuest Timing Analyzer senzor open limit ! B : imput 2.5V : : 8 H
= - GND . B7 : gnd :
LJ_, E::ul::;gﬁ VOLTULE ERtree : BB : Anput 2.3 ¥ . I H e Birectn e
1 Flow Suppressed Messiges GHD - B9 - gnd ; mﬁ] W':"n“i"
seg 3] . BlO :ooutput - 2.3 W : 2 7 H those(2] Output
Er— sealll \ ¢ ELL ;ooutout ;@ 2.3 W S W : M - withode{l] Output
VCCIOoS : C3 ; power i : 2.5 : & : L cathodalN]__| Ot
nCE : C4 : : : : 9 : r—
~ALTERA_NC50~ / RESERVED INPUT WITH_WEAK PULLUFP : C5 input : 2.5V z 1 8
RESERVED INPUT_WITH_WERK_PULLUP : Cé : 8 : Tasks AL
W - mwm i - nw - L _.IE’.!H‘,’MW
] Garly P Plannng. ., |
P Run V0 Assgnment Anblyss
- Export Fin Assgnmints..,
1 P Finder....
w i Highlaht Ping
[% Hamad: = Ede: X
e]
Pin Planner 1 et Oraon | tocon
o Cathode] 3) Dutpit
.; Mii
. . . . ; 1 nm
Fournit une vue globale, graphique et interactive : cathodedo) oo
!/ 5 ol Inpan
7 0 0 g . . W mkor_clode Output
de lI'assignation des pins. Il permet de visualiser moopem Oupw
v FHL Inpat
. e, 0 . eFe -:h Nﬁ] W
la disposition physique du FPGA, et de modifier % seqls] outas
O
. . o] 3 Output
facilement les affectations : seal2] vt
y Bea1] Outpt
% seld] Dt
% Bngnr_Soked_lendl npend
Sncid_opbn_limit Input
Sl _ Dk Ingan
Wbt Inpat

Fichier .pin

Récapitule I'ensemble des broches
réellement utilisées par le design, avec

leur nom logique, leur position physique et

leur direction (input/output).

'O Bonk

VREF Group

Fiter Location
PIH_D11
PEA_L13
|Po_M2 |
PR_LY
PR_IT
PIH_ALZ
PIN_D12
PIH_)G
PRN_B13
PEH_BLO
PIH_ALY
PIH_C13
PBH_C11
PBY_BLY
PIH_C12
PIH_AL1
PI_BE
FIN_D13
PIH_DS

L Standard

2.5 V [dafniin)
2.5 V [defaur)
2.5V (defai)
1.5 V (dafault)
1.5 v (default)
2.5V {default)
2.5 v [defaul)
2.5 V [difau)
2.5 W [defou)
2.5V [dafaur)
2.5 V' [dafaur)
1.5 V (dafou)
2.5 V (defnult)
2.5 V (dafau)
1.5V (defaul)
2.5 v [default)
2.5V [difau)
2.5 V [default)
2.5 W [dafaum)

R giarvid

Top View - Wire Bond

Cyclone IV GX - EP4CGX15BF 14AT7

currgnt Strangt

Pama (delault)
Bbma [delsult)
16ma (default)
LhmaA (delault)
1émud, (default)
Lhma (delault)
phma (delault)
phmA, (delault)
phma, (default)
B [delsult)
L [delsult)
LhmaA (default)
1éma (default)
1éma (delault)
Lima (delault)
péma (delault)
phma, (delault)
1hm (delault)
Béma [dalsult)

Slawe Rate

2 [dafault)
2 [dafault)
2 [default)
2 (default)

1 (default)
1 [defauit)

2 [defauilt)
2 (default]
2 [dfailt)
2 [dwfault]
2 [default)
2 (dafault]
1 [defoult)

57

L'étape de Placement et Routage, assurée par le module Fitter de Quartus, consiste a implanter physiquement le

design synthétisé dans I'architecture réelle du FPGA. Durant cette phase, le Fitter détermine I'emplacement précis
de chaque ressource logique (LUT, registres, blocs mémoire...) puis établit les connexions internes nécessaires en

utilisant le réseau d’interconnexion du FPGA.

Technology Map Viewer
after Fitting

NetlList final avec placement et routage _—
réel dans le FPGA. S

[
| i L
¥ =] r LR Lt
:
s ey o]
¥ -
= O T i T Yl
E 5
I 1 | .

Lt O
L] ¥ -
- -
CLEE Ty iy &
% -
|

iy, TR, R |

_.__._.._.._..__._
;B o B 1B
- = -
&

iy TR D [

.- Etape 4 : Génération du bitstream et programmationdu FPGA : - - -

Une fois le placement et le routage terminés, Quartus génere le fichier bitstream .sof, qui contient la configuration
finale du FPGA. Ce fichier est ensuite chargé dans le FPGA via I'outil Programmer et l'interface USB-Blaster. Des la
programmation terminée, le FPGA adopte instantanément la logique décrite dans le bitstream et le systeme est

prét a fonctionner.

Fichier bitstream généré Table of Contents

AN Assembler Generated Files

v [Assembler

=5 Summary
= Settings
=8 Generated Files

C’est le fichier qui sera chargé dans le
fPGA lors de la programmation

9 Device Options: C:/Users/HF/Documents;

\D Messages

oy ww

Tacks el ot L
Flow: Full Design

— File Edit View FProcessing Tools Window Help 'S
Task

w [Netlist Viewers

& Programmer - C/Users/HP/Documents/projet fpga quartus/proj2 - proj2 - [output_file...

File Name

1 C:/Users/HP/Documents/projet fpga quartus/output_files/proj2.sof:

O x .

1
Search alters, com ﬂ |

» B 10 Assignment Analysis 8 Start

» I Early Timing Estimate
» P Fitter (Flace & Rioute)
» P Assembler (Generate programming f i Auto Detect
> TimeQuest Tlrnlng Anahysis
» B EDA Netlist Writer ¢ Delete
& Program Device (Open ngramrrwﬂ

> 3 Verify Design

o Ston output_files/projz.sof EP4CGX15BF14 0OODOEEZ ODODOBEZ

L4488

[Add File...

Configure

T Expart Database - _
] Archive Project ¢ Change File

H Save File

5] L7 .
2 ¥ L] Saarch>>
Al O A4 b L wholsr =¥ Add Device.. T
J — >
[yipe ID Messadge .
................... 1% up
" oo
1 w

Ot

» Running Quartus II I Dover EpaCerIzEF 1
Command: gquartus nj

64-Bit 1

>

€66

guartus II

ﬂ RTL Viewar I Hardware Setup... Mo Hardware Mode: JTAG Progress: I
@ State Machine Viewer [] Enable real-time ISF to allow background programmmi ng (Ffor MAX 1T and MAX V' devices)
= Technology Map Viewer (Pos]

» B Design Assistant (Post-Mapping) - File Davica Checksum Usercode Program/ Verify Blank- Examine

Check

Programmation

- Enfin, nous connectons la carte au PC via

| ~un cable JTAG (USB-Blaster), puis nous
ouvrons l'outil Quartus Programmer afin
de lancer la programmation du FPGA.

59

Matériel

FPGA basse
consommation de

la famille Cyclone
IV GX

Module capteur
infrarouge
comprenant un
émetteur et un
récepteur IR

Micro-servo
Mmoteur offrant

une rotation
d’environ 0—180°
contrdlée par
PWM

D4 A FD3D
|

HEEEE

EDDPC G DI

Module
d'affichage
composé de
quatre chiffres 7-
segments
multiplexés.

Montage final

Note : Fritzing ne
disposant pas de cartes
Altera/Intel, nous
utilisons une Mojo v3
(FPGA Spartan) comme
équivalent visuel pour le
schéma.

Conclusion

Au terme de ce projet, nous avons réussi a concevoir et mettre en place
un systeme intelligent de gestion de parking . L'ensemble des objectifs
techniques fixés ont été atteints : le systeme assure correctement la
détection des entrées et sorties, le comptage en temps réel du nombre
de places disponibles, I'affichage dynamique sur 7-segments, ainsi que
le contrOle automatique de la barriere selon I'état du parking. Les
simulations réalisées via le testbench ont permis de valider le
comportement global du systeme avant son implémentation
matérielle.

Ce travail nous a offert une réelle mise en pratique des concepts
essentiels liés a la conception numeérique, la programmation VHDL et
'organisation hiérarchique d'un systeme embarqué. Il a également
permis de renforcer notre compréhension du fonctionnement des FPGA
et de la modularité dans les architectures matérielles.

62

MERCI

POUR VOTRE ATTENTION

Présenté par:

KUNAKA DANIEL ABOUL-MOUMOUNI DIALLO
MAKRI YOUSSRA BOUARRAF DOHA
SIMPORE TAOBATA ELBAROUDI MALAK
SABOR LAILA MOUHAFID HAFSA

Professeur: JAMAL ZBITOU

